
Written Exam at the Department of Economics

Winter 2019–20

Advanced Microeconometrics

Retake Exam

— Suggested Answers —

Problem 1

Consider the following discrete choice model for a sample of individuals i =

1, . . . , N :

yi = arg max
j∈{1,...,J}

{uij}, uij = vij + εij, vij = x′ijβ + w′iγj (1)

where yi ∈ {1, . . . , J} is the alternative chosen by individual i and uij denotes

the utility derived from choosing alternative j for individual i. Utility, uij, is

composed of an observed and deterministic part of utility, vij, and unobserved

and random component of utility, εij.

The observed part of utility vij = x′ijβ + w′iγj depends on a vector of choice

specific observed explanatory variables, xij, that vary with both individuals

i and choice alternative j, and a vector of observed characteristics, wi, only

specific to the decision maker i.

Assume further that εij is iid extreme value type 1 distributed with location

parameter µ = 0 and scale parameter σ, such that conditional choice proba-

bilities has the logit form

Pr(yi = j | vi1, . . . , viJ ;σ) =
exp(vij/σ)∑J
k=1 exp(vik/σ)

Question 1.1: Discuss the identification of this model and explain if the scale

and level of utility are identified from the choice data. In particular, dis-

cuss whether parameters β, γj and σ2 are identified given the observable
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variables {yi, xi1, . . . , xiJ , wi}. If some parameters are unidentified, dis-

cuss which normalizations that are necessary to achieve identification.

Suggested answer

If we plug the expressions for vij into the conditional choice probability

Pr(yi = j|xi1, ..., xiJ , w1, ..., wJ ;σ, β, γ) =
exp(x′ijβ/σ + w′iλj/σ)∑J
k=1 exp(x′ikβ/σ + w′iλk/σ)

For discrete choice models in general, we need to fix both the scale and

level of utility. As should be clear from the above expression, we see that

only the ratios - β/σ and λ/σ - are identified, since we can multiply the

parameters by any constant c without affecting these ratios. Hence, the

parameters γ, β and σ are not separable identified and we need some

normalization of the parameters for identification. For instance we can

normalize σ to 1.

Since only differences in utility matter for the optimal choices, we also need

to fix the level of utility for one alternative. The utilities can be arbitrarily

shifted by adding a constant K without changing the choice probabilities.

For the logit model this gives

Pr(yi = j|vi1, ..., viJ ;σ) =

exp(vij/σ +K)∑J
k=1 exp(vik/σ +K)

=
exp(K) exp(vij/σ)

exp(K)
∑J

k=1 exp(vik/σ)
=

exp(vij/σ)∑J
k=1 exp(vik/σ)

Usually we normalize the the level of utility for some reference alternative

to zero, say j = 1, by excluding any intercepts, β0, in β and setting γ1 = 0.

Finally note that γ is identified through variation in choices, yi and indi-

vidual characteristics, wi, and β is identified through variation in yi and

through variation in xij over alternatives.

Question 1.2: Given the model outlined above, derive the corresponding log-

likelihood function for a random sample ofN observations {yi, xi1, . . . , xiJ , wi}Ni=1,

and describe how to obtain Maximum Likelihood estimates of the pa-

rameters of interest.
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Suggested answer

The likelihood contribution is given by the conditional choice probabil-

ity for the chosen alternatives and measures how likely a given realized

observation is as a function of the parameters

li(σ, β, γ) =
J∏
k=1

Pr(yi = k|vi1, ..., viJ ;σ, β, γ)1{yi=j}

The corresponding likelihood function for a random sample of individual

is

L(σ, β, γ) =
N∏
i=1

li(σ, β, γ)

and the corresponding log-likelihood function is given by

logL(σ, β, γ) =
N∑
i=1

J∑
k=1

logPr(yi = k|vi1, ..., viJ ;σ, β, γ) · 1{yi = j}

=
N∑
i=1

J∑
k=1

(x′ikβ/σ + w′iγk/σ

− log{
J∑
l=1

exp{x′ilβ/σ + wiγl/σ}}) · 1{yi = j}

To to obtain the Maximum Likelihood Estimator (MLE) we want to max-

imize the log-likelihood subject to the normalizations mentioned above,

ie. σ = 1, γ1 = 0 and β0 = 0. Hence, we want to maximize the likeli-

hood function with respect to the vector of parameters θ = (β, γ) with

γ = (β1, .., βK) and γ = (γ, 2, .., γJ).

θ̂MLE = arg max logL(1, β, γ)

The optimization problem can easily be solved by standard gradient based

Newton type solvers since the likelihood function for logit is differentiable

and globally concave in parameters θ. Since it is a likelihood function

we want to maximize, we can use the BHHH algorithm that exploits that

the outer-product of the gradient can be used as an approximation of the

hessian due to the well known information identity.
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Question 1.3: Let pij ≡ Pr(yi = j | wi, xi1, . . . , xiJ) and show that the par-

tial effects of the observed outcome with respect to marginal changes in

covariates xik and wi can be written as

∂pij
∂xik

= pij (1{k = j} − pik) β/σ

and
∂pij
∂wi

= pij

(
γj/σ −

J∑
l=1

pilγl/σ

)

where 1{·} is the indicator function.

Discuss also whether the partial effects are identified if σ is unidentified?

Suggested answer

Differentiate the conditional choice probabilities, pij with respect to xik :

∂pij
∂xik

=
evij/σ1{k = j}β/σ(

∑J
l=1 e

vil/σ)

(
∑J

l=1 e
vil/σ)2

− evij/σevik/σβ/σ

(
∑J

l=1 e
vil/σ)2

= β/σ1{k = j} evij/σ∑J
l=1 e

vil/σ
− β/σ evij/σevik/σ

(
∑J

l=1 e
vil/σ)2

= β/σpij1{k = j} − β/σpijpik
= pij(1{k = j} − pik)β/σ

Similar differentiate pij with respect to wi:

∂pij
∂wi

=
evij/σγj/σ(

∑J
l=1 e

vil/σ)

(
∑J

l=1 e
vil/σ)2

− evij/σ(
∑J

l=1 e
vil/σγl/σ)

(
∑J

l=1 e
vil/σ)2

= γj/σ
evij/σ∑J
l=1 e

vil/σ
− evij/σ(

∑J
l=1 γl/σe

vil/σ)

(
∑J

l=1 e
vil/σ)2

= γj/σpij − pij
J∑
l=1

pilγl/σ

= pij(γj/σ −
J∑
l=1

pilγl/σ)

From these we see that the marginal effects of xij and wi are identified

even though σ is not separately identified, since they only depends on the

ratios β/σ and γ/σ which are identified.

Page 4 of 12



Question 1.4: Derive the odds ratio pik/pil and show that this ratio of choice

probabilities between alternatives k and l does not depend on xij for any

alternative j other than k and l. Discuss the implications of this.

Suggested answer

The odds ratio is

pik
pil

=
evik/σ/(

∑J
j=1 e

vij/σ)

evil/σ/(
∑J

j=1 e
vij/σ)

=
evik/σ

evil/σ

= e(vik−vil)/σ

= e((xik−xil)
′β+wi(γk−γl))/σ

So the odds ratio between alternative k and alternative l is independent of

xij for any j 6= k, l. Hence, any changes in xij, j 6= k, l will have the same

proportional affect on pik as on pil and thereby not affect the odds ratio.

This reflects the independence of irrelevant alternatives (IIA) property of

the logit model, which implies restrictive and often unrealistic substitution

patterns in the model. One example that illustrate this is the well known

red bus - blue bus problem.

Question 1.5: You work with a co-author on a residential choice model where

you try to model in what region yi ∈ {1, . . . , J} that households choose

to locate. You are interested in predicting the effect on location choices

from a counterfactual change in attributes of a particular region (such as

house prices, school quality, crime rates, pollution, etc.). Your co-author

is concerned that the substitution patterns imposed by the logit model

are too restrictive and suggests that you instead work with the probit

model where εij is multivariate normal.

Why is your co-author concerned, and how could probit potentially help

to address this issue?

Suggested answer

The coauthor is concerned with the IIA property already mentioned. In

the present context, the IIA property implies for instance that an increase
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in house prices of region j will increase the demand in terms of choice

probabilities for any other region k 6= j with the same proportion. These

substitution patterns are often unrealistic. For instance you would antici-

pate that an increase in the house prices in region j would have the largest

effect on houses closes to that region.

The probit model does not suffer from the IIA property, since it allows us to

specify a covariance matrix for the error term εij that implies correlation

across alternatives (residential regions), j = 1, .., J ; and thereby more

flexible spatial substitution patterns. By estimating the parameters of

the (appropriately normalized) covariance matrix in the probit model, we

can learn about the substitution patterns that we do not capture in the

deterministic part of utility, but are nevertheless observed in the data.

Compared to the logit model, the multinomial probit is much harder to

solve and estimate since we cannot express the choice probabilities in closed

form. More about this below.

Problem 2

We now consider the Probit model, which has the same structure as above ex-

cept that εij in Eq. (1) now follows a multivariate normal distribution. Specif-

ically, εij is an element in the J dimensional vector εi = (εi1, .., εiJ)′, where

εi ∼ N (0,Σ).

Question 2.1: To estimate the parameters of the probit model, your co-

author suggests that you construct an estimator based on the following

optimization problem:

θ̂ = arg max
θ

[
1

N

N∑
i=1

ln f̂(yi | zi, uiM ; θ)

]
(2)

where uiM is a sample of M random draws uiM = {u(1)i , . . . , u
(M)
i } from

the standard normal distribution, for each i = 1, . . . , N . Here we have

defined zi = {xi1, . . . , xiJ , wi} to simplify notation.
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Describe the principle of the estimation method your co-author is refer-

ring to. As part of your answer, you are expected to provide and justify

a possible expression of f̂(yi | zi, uiM ; θ), and to outline the steps of the

corresponding estimation approach.

Hint (for the very detailed answer): You can always obtain draws from

the multivariate normal by rescaling a J-vector u
(m)
i of independent

draws from the standard normal distribution. In particular, ε
(m)
i =

u
(m)
i L ∼ N (0,Σ), where L is the lower triangular Cholesky matrix such

that Σ = LL′.

Suggested answer

[Note that there was a typo in the optimization problem stated in Eq. (2)

in the original exam set. The argmin operator should be replaced by the

argmax operator. We have corrected this in Eq. (2) above. Any confusion

originating from this typo has been taken into account when grading.]

The estimation method the colleague is referring to is the Method of Sim-

ulated likelihood (MSL) estimator.

The MSL estimator finds the parameters that maximizes log of the simu-

lated likelihood function given our sample of random draws, uiM . Hence,

a natural choice for f̂ would be based on simulated conditional choice

probabilities

p̂j(zi, uiM ; θ) = 1/M
M∑
m=1

1{ arg max
k∈(1,2,...,J)

{x′ijβ + w′iγj + ε
(m)
ik } = j}}

where ε
(m)
ik is the k’th element of the vector ε

(m)
i = u

(m)
i L containing the J

correlated error terms.

For an individual i that chooses alternative yi the simulated likelihood

then becomes

f̂(yi|zi, uiM ; θ) =
J∏
j=1

{p̂j(zi, uiM ; θ)}1{yi=j}

In order to evaluate the objective function of the maximization problem

Page 7 of 12



given by eq. (2) we do the following four steps: (1) for each individual i,

take M random samples of the J dimensional vector u
(m)
i drawn from the

the standard normal distribution, (2) calculate the corresponding corre-

lated error terms, ε
(m)
i , (3) calculate f̂ for each individual., (4) aggregate

over i to obtain the objective function.

Note that for each evaluation of the objective function, as we search over

the parameter space, we keep the simulation draws, u
(m)
i , fixed.

The parameters are the structural parameters mentioned above and the

parameters indexing the variance-covariance matrix Σ (when appropriately

normalized by fixing at least one element).

Question 2.2: How do you recommend to choose the number of random

draws M in Question 2.1? In particular, explain how this number affects

the bias of the estimator. Is the estimator consistent for a fixed number

of draws, e.q. M = 1. (no derivations expected).

Suggested answer

The MSL estimator contains a simulation bias due to the log transfor-

mation of the simulated probabilities. Suppose p̂ij(θ) ≡ p̂j(zi, uiM ; θ)

is an unbiased simulator of the true choice probabilities pij(θ), so that

Em[p̂ij(θ)] = pij(θ), where the expectation is over draws used in the sim-

ulation. However, since the log operator is a nonlinear transformation,

log(p
(m)
ij (θ)) is not an unbiased simulator for log(pij(θ)). The bias in the

simulator of log(pij(θ)) translate into bias in the MSL estimator. This

bias diminish as more draws are used in the simulation. MSL is consistent

when M increase at any rate with N and is asymptotically equivalent to

MLE if M increase at a rate faster than
√
N . However, MSL is biased and

inconsistent for any fixed M , e.g. when M = 1.

Question 2.3: How would you modify the optimization problem in Eq. (2)

to implement an estimator θ̂ with the remarkable property that it is

consistent for M = 1? Describe briefly the corresponding estimation

approach.
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Suggested answer

We could apply the Method of Simulated Moments (MSM) estimator. A

possible choice would be the following moment conditions

q(yi, zij; θ) = [1{yi = j} − 1/M
M∑
m=1

p
(m)
ij (θ)]zij

where we have defined zij = {xij, wi} to simplify notation. The resulting

objective function is given by

Q(θ) =
N∑
i=1

J∑
j=1

[1{yi = j} − 1/M
M∑
m=1

p
(m)
ij (θ)]zij = 0

The important feature of this estimator is that p
(m)
ij enters the objective

function linearly. As a result, if p
(m)
ij is unbiased subsimulator for pij then

[1{yi = j} − 1/M
∑M

m=1 p
(m)
ij (θ)]zij is unbiased for [1{yi = j} − pij(θ)]zij.

Since there is no simulation bias in the estimation condition, the MSM

estimator is consistent, even for M = 1.
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Problem 3

Consider the following MATLAB functions:

1 function [p] = f1(V)

2 p = exp(V)./sum(exp(V));

3 end

4

5 function [p, y] = f2(V, M)

6 J=numel(V);

7 U = V - evrnd(0,1,M,J);

8 [Vmax, y] = max(U,[],2);

9 for j=1:J

10 p(j)=mean(y==j);

11 end

12 end

and the following piece of code:

1 rng(123);

2 V=[0,1,2,3];

3 M=10000;

4

5 fprintf('f1 = ');

6 fprintf('%10.4f ', f1(V));

7 fprintf('\n');
8

9 fprintf('f2 = ');

10 fprintf('%10.4f ', f2(V, M));

11 fprintf('\n');

which produces the following output:

1 f1 = 0.0321 0.0871 0.2369 0.6439

2 f2 = 0.0306 0.0897 0.2306 0.6491
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Question 3.1: Express in mathematical terms what these two functions do.

You should just provide a few equations to answer this question. Be

explicit about the notation.

[Note: The MATLAB function evrnd(mu, sigma, m, n) produces a m×n
matrix of random draws from the type 1 extreme value distribution with

location parameter mu and scale parameter sigma. MATLAB returns the

version suitable for modeling minima rather than maxima. We need the

mirror image of this distribution which is why we take the negative value]

Suggested answer

The first function p = f1(V ) calculates the vector of closed form condi-

tional choice probabilities, p, of the logit model

pj =
eVj∑J
k=1 e

Vk

for a given vector of alternative-specific deterministic utility parts, V .

The second function [p, y] = f2(V,M) outputs a vector of simulated con-

ditional choice probabilities p and a vector of simulated choices y for a

given a vector of alternative-specific deterministic utility parts, V , and a

given constant M that specifies the number simulations used.

The function first simulates a J×M matrix of alternative-specific utilities

given by the sum of the deterministic utility part and random utility part,

where the random utility part is drawn from the extreme value distribution.

U
(m)
j = Vj + ε

(m)
j , ε

(m)
j ∼ EV (0, 1)

Secondly the function finds the alternative y(m) that gives the highest

amount of utility for each simulation, m

y(m) = arg max
j∈(1,2,...,J)

{U (m)
j }

Finally the function finds the simulated alternative-specific conditional
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choice probabilities, pj

pj = 1/M
M∑
m=1

1{y(m) = j}

Hence, p is a vector containing J conditional choice probabilities and y is

a vector containing M simulated choices.

Question 3.2: Explain why the output of f1() and f2() look similar.

Suggested answer

Function f1() calculates the closed form conditional choice probabilities of

the logit model, derived from the random utility model, where the random

utility part is assumed to follow the extreme value distribution.

Function f2( ) calculates the simulated conditional choice probabilities

from the random utility model where the random utility part is simulated

by the extreme value distribution.

This implies that the two functions only differs with respect to how the

random utility part is integrated out. In the closed form expression for the

conditional choice probabilities the random utility part is integrated out

analytically. In contrast the random utility part is integrated out nummer-

ically when calculating the simulated the conditional choice probabilities

by applying Monte Carlo integrations. Hence, as the number of simula-

tions, M , grows the simulated conditional choice probabilities should by

the law of large numbers converge to the closed form conditional choice

probabilities.

1/M
M∑
m=1

1{Vj + u
(m)
ij = j} −−−−→

M→∞

∫ ∞
−∞

...

∫ ∞
−∞

1{arg max
k

Vk + εk = j}dε1, ..., dεJ

Since M = 10, 000 in the provided piece of code, we would expect these

conditional choice probabilities to be very similar, which is also the case

in the shown output.
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